首页

明史-志:目录

上一节:第七章-卷七

下一节:第九章-卷九

第八章-卷八 白话

制定历法的人各有自己的渊源,史书应该详尽采录,使后世有参考的依据。

如《太初历》起源于音律,《大衍历》发端于蓍卜,都详细见于本历志。

《授时历》以测量检骏推算焉宗旨,祇求与天相合,不牵强附会音律、卦爻。

然而它立法的依据.数据的出处,以及日晷影长、行星度数,都有完整的书籍。

郭守堃、查履谦的传中,有书名可考。

《元史》全没有采录,现仅存奎盏的《议录》、《历经》的初稿。

后来改变三应率及数据表的数据,和割圆弧矢的方法、平立定三差的来源,都删去没有记载。

使作者的精辟见解湮汝无闻,有见识的人都为此感到道憾。

现在根据《大统历通轨》及《历草》等书,稍加编排,首先是历法原理,其次是数据表,再其次是推算。

而历法原理的细目有七项,是勾股测望,弧矢割圆,黄赤道差,黄赤道内外度,白道交周,日月五星平立定三差,里差刻漏。

在北京立四丈高的标尺,冬至日正午,测得影长七丈九尺八寸五分。

随即用简仪测得太阳南至地平二十六度四十六分半,焉半弧背。

求得矢度为五度九十一分半。

将周天半径,减去矢度,剩余五十四度九十六分为股,就是本地离头顶上太阳的度数。

用以弦股求勾的方法,求得勾为二十六度十七分六十六秒,就是太阳出地的半弧弦。

在北京立四丈高的标尺,夏至日正午,测得影长一丈一尺七寸一分。

随即用简仪测到太阳南至地平七十四度二十六分半,为半弧背。

求得矢度为四十三度七十四分又四分之一。

将周天半径,减去矢度,剩下十七度十三分二十五秒焉勾,就是本地离头顶上太阳的度数。

用以勾弦求股的方法,求得股为五十八度四十五分半,就是太阳出地的半弧弦。

将冬至夏至太阳南至地平的度数相加,得一百度七十三分,折半得五十度三十六分半,为北京的赤道出地度数。

以赤道出地度转减周天的四分之一,余四十度九十四分九十三秒七十五微,就是北京的纬度。

周天圆的直径为一百二十一度七十五分又四分之一。

四分之一不用。

半径为六十度八十七分半。

又是黄道赤道的大弦。

冬至夏至黄道赤道内外半弧背为二十四度。

所测敷取整数。

冬至夏至黄道赤道弧矢为四度八十四分八十二秒。

黄道赤道大勾为二十三度八十分七十秒。

黄道床道大股为五十六度零二分六十八秒。

半径内减去矢度。

割圆求矢的方法。

将半弧背的度数自乘,就是半弧背的幂。

将周天圆的直径自乘,就是上廉。

上廉乘半弧背的幂,就是正实。

上廉乘以天圆直径,就是益从方。

半弧背乘以二,乘以天圆直径,就是下廉。

用初商乘上廉,再用益从方减去这个得数,余数就是从方。

将初商自乘并用下廉减自乘的得数,余数乘以初商,就是从廉。

从方和从廉相加,就是下法。

下法乘以初商,再用正寅减去此数,如正赏不够减,就改用初商。

正实还有余数,依次用商除下去。

将初商乘以二,与次商相加并乘以上廉,再用益从方减去乘积,余数为从方。

将初商和次商相加并自乘,又将初商自乘,然后两数相加,再用下廉城此数,余数用初商的二倍加次商舆之相乘,就是从廉。

从方和从廉相加,就是下法。

下法乘以次商,再用余实碱此数,从而确定次商。

如还有余数,用同样的方法计算,商的得敷就是矢的度数。

黄道赤道同用这一度数。

例如以半弧背一度来求矢的度数。

方法是:将半弧背一度自乘,得敷为一度,是半弧背的幂。

将天圆直径一百二十一度又四分之三自乘,得一万四千八百二十三度零六分二十五秒,就是上廉。

上廉乘以半弧背的幂,得一万四千八百二十三度零六分二十五秒,就是正实。

上廉又乘天圆直径,得一百八十万四千七百零七度八十五分九十三秒七五,就是益从方。

半弧背一度加倍,得二度,乘以天圆直径得二百四十三度五十分,就是下廉。

初商八十秒。

将初商八十秒乘以上廉一万四千八百二十三度零六二五,得一百一十八度五八四五,再用益从方一百八十万四千七百零七度八五九三七五减此数,余一百八+葛四千五百八十九度二七四八七五,就是从方。

又将初商八十秒自乘,得六十四微,再用下廉减此敷,余二百四十三度四九九九三六。

仍然用八十秒乘此余数,得一度九四七九九九四八八,就是从廉。

将从廉和从方相加,共得一百八十万四千五百九十一度二二二八七四四八八,就是下法。

下法乘以初商,得一万四千四百三十六度七十二分九七八二九九五九零四,再用正实藏去此数,得余实三百八十六度三十三分二七一七零零四零九六。

次商二秒。

将初商八十秒加倍,得一分六十秒。

加次商二秒,得一分六十二秒,乘以上廉一万四千八百二十三度零六二五,得二百四十度一三三六一二五,再用益从方减此数,余一百八十万四千四百六十七度七二五七六二五,就是从方。

又将初商和次商八十二秒自乘,得六十七微。

加上初商八十秒自乘之数,得一秒三十一微,用下廉减此敷,余二百四十三度四九九八六九。

乘以前面所得到的一分六十二秒,得三度九十四分四六九七八七七八,就是从廉。

将从廉和从方相加,得一百八十万四千四百七十一度六十七分零四六零三七七八,就是下法。

将下法乘以次商,得三百六十度八九四三三四零九二零七五五六,用余实减此敷,还余二十五度四三八三八二九一二零二零四四。

不足一秒舍弃不用,以下同。

求得矢的度数共八十二秒,剩余部分继续用上列方法计算。

求得矢的度数,作为黄道赤道相求及求二者内外度的根。

数据详见后文。

求黄道各度之下赤道度数的方法。

将天圆的半径减去黄道矢的度数,余数焉黄道赤道的小弦。

将黄道赤道的小弦,乘以黄道赤道的大股大股见弧矢割圆作为被除数。

黄道赤道的大弦天圆半径作为除数。

两数相除,就是黄道赤道的小股。

将黄道的矢自乘作为被除数,以天圆的直径作为除数,两数相除,就是黄道半背弦差。

用黄道积度即黄道半弧背减这个差,余数就是黄道半弧弦。

将黄道半弧弦自乘作为股的幂,黄道赤道小股自乘作为勾的幂,两个幂相加,开平方,就是赤道小弦。

将黄道的半弧弦,乘以天圆的半径也是赤道大弦作为被除数,以赤遒小弦作为除数与之相除,就是赤道的半弧弦。

将黄道赤道的小股,也是赤道的横小勾。

用赤道大弦即半径相乘作为被除数,以赤道小弦作为除数与之相除,就是赤道横大勾,再用半径减赤道横大勾,余数就是赤道横弧矢。

将横弧矢自乘作为被除数,以直径作为除数与之相除,就是赤道的半背弦差。

以半背弦差加赤道半弧弦,就是赤道的度数。

如黄道半弧背为一度,求赤道的度数。

方法是:将半径六十度八十七分五十秒,即黄道赤道大弦。

黄道的矢八十二秒,余六十度八六六八,就是黄道赤道小弦。

将黄道赤道小弦,乘以黄道赤道大股五十六度零二六八,得三千四百一十度一七二零三零二四作为被除数,以黄道赤道大弦六十度八七五作为除数,两敷相除,得五十六度零一分九十二秒,就是黄道赤道的小股。

又是赤道小勾。

将矢的度数八十二秒自乘,得六十七微,以天圆直径一百二十一度七五作为除数,舆之相除得五十五纤,就是黄道半背弦差。

将黄道半弧背一度,减黄道半背弦差,余数就是半弧弦。

因半背弦差在一微以下,所以不减,就用一度作为半弧弦。

将黄道半弧弦一度自乘,得一度作为股的幂。

黄道赤道小股五十六度零一九二自乘,得三千一百三十八度一五零七六八六四作为勾的幂。

两个幂相加得三千一百三十九度一五零七六八六四焉弦实,开平方,得五十六度零二八一,就是赤道小弦。

将赤道半弧弦一度,乘以天圆半径,即赤道大弦。

得六十度八七五作为被除数,以赤道小弦五十六度零二八一作为除敷相除,得一度零八分六十五秒,就是赤道的半弧弦。

将黄道赤道的小股五十六度零一九二,又是赤道小勾。

乘以赤道大弦天圆半径六十度八七五,得三千四百一十度一六八八作为被除数,以赤道小弦作为除数相除,得六十度八十六分五十三秒,就是赤道横大勾。

将天圆半径六十度八十七分五十秒,减赤道大勾六十度八十六分五十三秒,余九十七秒,就是赤道横弧矢。

将赤道横弧矢九十七秒自乘,得九十四微零九,再以天圆直径作除数舆之相除,得七十七纤,就是赤道背弦差。

将赤道半弧弦一度零八分六十五秒,加赤道背弦差,就是赤道的度数。

现在赤道背弦差在一微以下,舍弃不加,就用半弧弦作为度数。

共求得赤道度数为一度零八分六十五秒。

其余度数各自用上面的方法,求到各黄道度数下的赤道度数,两敷相减,就得到黄道赤道差,这是冬至夏至后的比率。

春分秋分以后,以赤道度数求黄道,反过来相求,数据都相同。

按郭守敬创立的新方法有五条,其中一条是黄道赤道差,这就是它的数据。

旧方法用一百零一度相减相乘。

《授时历》创立新方法,用勾股、弧矢、方圆、斜直所包含的内容,推求黄道赤道的差敷,合乎天象的原理,比古代更严密。

只是《至元历经》的记载很筒略,又误以黄道矢度为积差,黄道矢差为差率,现在予以纠正。

凡是圆周从中间剖开,就成了半圆。

任意切分半圆的一部分,就成了弧矢形,都有弧背,有弧弦,有矢。

切分出弧矢形的一半,就有半弧背,有半弧弦,有矢。

因为弦和矢就生出勾股形,以半弧弦焉勾,半径减矢的余数为股,半径为弦。

勾股内又形成小勾股,就有小勾、小股、小弦,而大小可以互相推求,平侧可以互相利用,圆周的道理,这就很切近了。

平线是赤道,斜线是黄道。

因为冬至夏至黄道赤道的距离,生出大勾股。

因为各度黄道赤道的距离,生出小勾股。

外面的大圆是赤道。

从北极俯视,黄道在赤道之内,有赤道的各度,就有各度的半弧弦,以此生出大勾股。

又各有舆它们相应的黄道半弧弦,以此生出小勾股。

这二者可以互相推求。

按旧史书没有图,然而表也是和圆同类的。

现在勾股割圆弧矢的方法,实在是历算家测算的根本。

没有图不能说明问题,因而保留其重要的几幅。

推算黄道各度距离赤道的内外度数及距离北极远近的方法。

将天圆半径减去赤道小弦,余敷就是赤道两个弦的差。

又是黄道赤道小弧的矢,又是内外矢,又是股弦差。

将半径减去黄道矢的度数,余数就是黄道赤道的小弦。

将冬至夏至黄道赤道内外半弧弦舆黄道赤道小弦相乘作为被除数,以黄道赤道大弦作为除数,即半径。

舆之相除就是黄道赤道小弧弦。

就是黄道赤道内外半弧弦,又是黄道赤道小勾。

将黄道赤道小弧矢自乘,即赤道两弦的差。

除以直径,就是半背弦差。

用这个差加黄道赤道小弧弦就是黄道赤道小弧半背,也就是黄道在赤道内外的度数。

根据黄道在赤道内外的度数,如果在盈初缩末象限表内就加,在缩初盈末象限表内就减,都加减象限表内的度数,就得到太阳距离北极的度数。

如冬至后黄道四十四度,求太阳距离赤道内外的度数及距离北极的度数。

方法是:将天圆半径六十度八十七分半,减黄道四十四度时赤道小弦五十八度三十五分六十九秒,余二度五十一分八十一秒,就是黄道赤道小弧矢。

即内外矢。

将半径六十度八七分半,减黄道四十四度时的矢一十六度五十六分八十二秒,余四十四度三十分六十八秒,就是黄道赤道小弦。

将黄道赤道小弦,用冬至夏至时黄道赤道内外半弧弦二十三度七十一分舆之相乘,得一千零五十度五十一分四二三八作为被除数,以黄道赤道大弦六十度八七五作为除数舆之相除,得十七度二十五分六十九秒,即黄道赤道小弧弦。

即内外半弧弦。

将黄道赤道小弧矢二度五十一分八十一秒自乘作为被除数,用直径一百二十一度七十五分与之相除,得五分二十一秒就是背弦差。

用背弦差加黄道赤道小弧弦十七度二十五分六十九秒,得十七度三十分八十九秒,就是冬至夏至前后黄道四十四度时,太阳距离赤道的内外度。

将象限九十一度三十一分四十三秒七五,加内外度十七度三零八九,得一百零八度六十二分三十二秒七五,就是冬至后黄道四十四度时太阳距离北极的度数。

推算白道和赤道的降交点距离黄道赤道降交点的最大数值。

方法是:将寅测到的白道出入黄道内外的六度作为半弧弦,又是大圆的弦矢,又是股和弦的差。

将半径六十度八七五自乘,得三干七百零五度七六五六二五,用矢六度与之相除,得六百一十七度六十三分为股弦的和,再加矢六度,共六百二十三度六十三分,就是大圆直径。

按法则求得容阔五度七十分,又是小勾。

又以冬至夏至时出入半弧弦二十三度七十一分作为大勾。

以大勾作除数,除大股五十六度零六分五十秒,得二度三十七分就整敷而言为度差。

以度差乘小勾,得小股十三度四十七分八十二秒,就是容半长。

以半径六十度八七五焉大弦,乘以小勾五度七十分作为被除数,以大勾二十三度七十一分焉除数舆之相除,得十四度六十三分就是小弦;又是白道赤道降交点距离黄道赤道降交点的半弧弦。

按法则求得半弧背十四度六十六贫,就是白道赤道降交点距离黄道赤道降交点的最大敷值。

上一节:第七章-卷七

下一节:第九章-卷九